🗂️
Data Structures
  • Data Structures Manual
  • Arrays
    • Array ADT
    • Linear Search
    • Binary Search
    • Some More Basic Operations
    • Reversing an Array
    • Operations in a Sorted Array
    • Merging Two Arrays
    • Set Operations
    • Finding Missing Elements
    • Duplicates in an Array
    • Getting a Pair whose Sum = K
    • Finding Max & Min in Single Scan
  • Strings
    • Finding the Length of a String
    • Changing Cases in a String
    • Finding Number of Vowels, Consonants & Words
    • Reversing a String
    • Checking for Palindrome
    • Duplicates in a String
    • Checking if Strings are Anagrams
    • Permutations of a String
  • Singly Linked List
    • Displaying the Nodes
    • Counting the Nodes
    • Sum of all Nodes
    • Finding the Maximum Element
    • Searching in a Node
    • Inserting a Node
    • Inserting a Node in Sorted List
    • Deleting a Node
    • Checking if List is Sorted
    • Removing Duplicates from a List
    • Reversing a Linked List
    • Concatenating Two Lists
    • Detecting a Loop in Linked List
    • Merge Two Sorted Lists
    • Finding the Middle Node
  • Cirular Linked List
    • Displaying the Nodes
    • Inserting a Node
    • Deleting a Node
  • Doubly Linked List
    • Inserting a Node
    • Deleting a Node
    • Reversing a Doubly Linked List
    • Circular Doubly Linked List
  • Stack
    • Stack Using Array
    • Stack Using Linked List
    • Balancing Parenthesis
    • Infix to Postfix
    • Evaluation of Postfix Expression
  • Queue
    • Queue using Array
    • Queue using Linked List
    • Double Ended Queue
  • Binary Tree
    • Creating a Binary Tree using Queue
    • Recursive Tree Traversals
    • Iterative Tree Traversals
    • Level Order Traversal
    • Counting Nodes in a Binary Tree
    • Finding the Height of Tree
    • Finding Sum of All Nodes
  • Binary Search Tree
    • Searching in a BST
    • Inserting in a BST
    • Deleting in a BST
  • AVL Tree
    • Inserting in an AVL Tree
    • AVL Tree Rotations
    • Deleting in an AVL Tree
  • Heap
    • Inserting in a Heap
    • Deleting in a Heap
    • Heapify
Powered by GitBook
On this page
  • LL Rotation :
  • RR Rotation :
  • LR Rotation :
  • RL Rotation :

Was this helpful?

  1. AVL Tree

AVL Tree Rotations

LL Rotation :

struct Node *LLRotation(struct Node *ptr) {

	struct Node *ptrL = ptr -> left;
	struct Node *ptrLR = ptrL -> right;

	ptrL -> right = ptr;
	ptr -> left = ptrLR;

	ptr -> height = nodeHeight(ptr);
	ptrL -> height = nodeHeight(ptr -> left);

	if (ptr == root) 
		root = ptrL;

	return ptrL;

}

RR Rotation :

struct Node *RRRotation(struct Node *ptr) {
	
	struct Node *ptrR = ptr -> right;
	struct Node *ptrRL = ptrR -> left;

	ptrR -> left = ptr;
	ptr -> right = ptrRL;

	ptr -> height = nodeHeight(ptr);
	ptrR -> height = nodeHeight(ptr -> right);

	if (ptr == root) 
		root = ptrR;

	return ptrR;

}

LR Rotation :

struct Node *LRRotation(struct Node *ptr) {

	struct Node *ptrL = ptr -> left;
	struct Node *ptrLR = ptrL -> right;

	ptrL -> right = ptrLR -> left;
	ptr -> left = ptrLR -> right;
	ptrLR -> left = ptrL;
	ptrLR -> right = ptr;

	ptr -> height = nodeHeight(ptr);
	ptrL -> height = nodeHeight(ptrL);
	ptrLR -> height = nodeHeight(ptrLR);

	if (ptr == root)
		root = ptrLR;

	return ptrLR;

}

RL Rotation :

struct Node *RLRotation(struct Node *ptr) {
	
	struct Node *ptrR = ptr -> right;
	struct Node *ptrRL = ptrR -> left;

	ptrR -> left = ptrRL -> right;
	ptr -> right = ptrRL -> left;
	ptrRL -> left = ptr;
	ptrRL -> right = ptrR;

	ptr -> height = nodeHeight(ptr);
	ptrR -> height = nodeHeight(ptrR);
	ptrRL -> height = nodeHeight(ptrRL);

	if (ptr == root)
		root = ptrRL;

	return ptrRL;

}

Contributed by Nitin Ranganath

PreviousInserting in an AVL TreeNextDeleting in an AVL Tree

Last updated 4 years ago

Was this helpful?