🗂️
Data Structures
  • Data Structures Manual
  • Arrays
    • Array ADT
    • Linear Search
    • Binary Search
    • Some More Basic Operations
    • Reversing an Array
    • Operations in a Sorted Array
    • Merging Two Arrays
    • Set Operations
    • Finding Missing Elements
    • Duplicates in an Array
    • Getting a Pair whose Sum = K
    • Finding Max & Min in Single Scan
  • Strings
    • Finding the Length of a String
    • Changing Cases in a String
    • Finding Number of Vowels, Consonants & Words
    • Reversing a String
    • Checking for Palindrome
    • Duplicates in a String
    • Checking if Strings are Anagrams
    • Permutations of a String
  • Singly Linked List
    • Displaying the Nodes
    • Counting the Nodes
    • Sum of all Nodes
    • Finding the Maximum Element
    • Searching in a Node
    • Inserting a Node
    • Inserting a Node in Sorted List
    • Deleting a Node
    • Checking if List is Sorted
    • Removing Duplicates from a List
    • Reversing a Linked List
    • Concatenating Two Lists
    • Detecting a Loop in Linked List
    • Merge Two Sorted Lists
    • Finding the Middle Node
  • Cirular Linked List
    • Displaying the Nodes
    • Inserting a Node
    • Deleting a Node
  • Doubly Linked List
    • Inserting a Node
    • Deleting a Node
    • Reversing a Doubly Linked List
    • Circular Doubly Linked List
  • Stack
    • Stack Using Array
    • Stack Using Linked List
    • Balancing Parenthesis
    • Infix to Postfix
    • Evaluation of Postfix Expression
  • Queue
    • Queue using Array
    • Queue using Linked List
    • Double Ended Queue
  • Binary Tree
    • Creating a Binary Tree using Queue
    • Recursive Tree Traversals
    • Iterative Tree Traversals
    • Level Order Traversal
    • Counting Nodes in a Binary Tree
    • Finding the Height of Tree
    • Finding Sum of All Nodes
  • Binary Search Tree
    • Searching in a BST
    • Inserting in a BST
    • Deleting in a BST
  • AVL Tree
    • Inserting in an AVL Tree
    • AVL Tree Rotations
    • Deleting in an AVL Tree
  • Heap
    • Inserting in a Heap
    • Deleting in a Heap
    • Heapify
Powered by GitBook
On this page
  • Max Heapify :
  • Min Heapify :

Was this helpful?

  1. Heap

Heapify

Max Heapify :

void maxHeapify(int h[], int index, int size) {

    // Set largest as parent and set children
    int left = 2 * index;
    int right = 2 * index + 1;
    int largest = index;
    
    // If left child is greater, make largest point to it
    if (left <= size && h[left] > h[largest])
        largest = left;
    
    // If right child is greater, make largest point to it
    if (right <= size && h[right] > h[largest])
        largest = right;
        
    // If largest is not parent, swap it with passed index
    if (largest != index) {
        int temp = h[index];
        h[index] = h[largest];
        h[largest] = temp;
        maxHeapify(h, largest, size);
    }
    return;

}

Min Heapify :

void minHeapify(int h[], int index, int size) {

    // Set smallest as parent and set children
    int left = 2 * index;
    int right = 2 * index + 1;
    int smallest = index;
    
    // If left child is smaller, make smallest point to it
    if (left <= size && h[left] < h[smallest])
        smallest = left;
    
    // If right child is smaller, make smallest point to it
    if (right <= size && h[right] < h[smallest])
        smallest = right;
        
    // If smallest is not parent, swap it with passed index
    if (smallest != index) {
        int temp = h[index];
        h[index] = h[smallest];
        h[smallest] = temp;
        minHeapify(h, smallest, size);
    }
    return;

}

Note: To build a max heap or min heap, run the function n/2 times . Like this :

for (int i = size/2; i >= 1; i--) {
    maxHeapify(heap,i,size);
}
PreviousDeleting in a Heap

Last updated 4 years ago

Was this helpful?